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Abstract We consider multiplicative monoids of the positive integers defined by a
single congruence. If a and b are positive integers such that a≤ b and a2≡ a mod b,
then such a monoid (known as an arithmetic congruence monoid or an ACM) can
be described as Ma,b = (a+ bN0)∪{1}. In lectures on elementary number theory,
Hilbert demonstrated to students the utility of the proof of the Fundamental The-
orem of Arithmetic for Z by considering the arithmetic congruence monoid with
a = 1 and b = 4. In M1,4, the element 441 has a nonunique factorization into ir-
reducible elements as 9 · 49 = 212. ACMs have appeared frequently in the math-
ematical literature over the last decade. While their structures can be understood
merely with rational number theory, their multiplicative behavior can become quite
complex. We show that all ACMs fall into one of three mutually exclusive classes:
regular (relating to a = 1), local (relating to gcd(a,b) = pk for some rational prime
p), and global (gcd(a,b) is not a power of a prime). In each case, we examine the
behavior of various invariants widely studied in the theory of nonunique factoriza-
tions. Our principal tool will be the construction of transfer homomorphisms from
the Ma,b to monoids with simpler multiplicative structure.

Key words: monoid, arithmetic progressions, nonunique factorization, elasticity of
factorization, Krull monoids

Early in the study of number theory, one encounters the obstacle of nonunique
factorization, since elements in many rings of algebraic integers do not always
factor uniquely into products of irreducible elements. The multiplicative structure
of these number rings has been classically used to demonstrate the prickly is-
sue of nonunique factorization. However, we can also exhibit the phenomenon of
nonunique factorization using a common object from additive number theory, arith-
metic progressions. An arithmetic congruence monoid (ACM) is an arithmetic
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progression which naturally possesses a multiplicative structure. Specifically, an
arithmetic congruence monoid is the monoid:1

Ma,b = (a+bN0)∪{1}= {1}∪{a,a+b,a+2b, . . .} ,

where a and b are positive integers satisfying 0< a≤ b and a2≡ a mod b. The con-
gruence demanded upon a and b is both sufficient and necessary for the arithmetic
progression a+ bN0 to be closed under multiplication. The trivial values a = 1 or
a = b satisfy this congruence for any b ≥ 1, but nontrivial pairs, such as a = 4 and
b = 6, also exist. In general, for a given b, there are 2r choices for a with 0 < a≤ b,
where r is the number of distinct primes dividing b (cf. Section 4).

As we shall describe in this survey, ACMs exhibit both unique and nonunique
factorization of elements, exhibiting the widely varying behavior one encounters
in algebraic number rings, as well as some more pathological behavior such as the
bifurcus property (cf. Section 2). In contrast to number rings, however, very little
mathematical background is necessary to grasp the idea of an ACM and uncover
many of its factorization properties. As such, ACMs can be a valuable pedagogical
tool, since arguments can often be phrased with elementary arithmetic and without
resorting to norms or other mathematical machinery to determine, say, whether an
element is irreducible. Despite the low barrier to initiating the study of ACMs, their
factorization theory is surprisingly complex: many questions remain open and the
finer study of the factorizations often requires more involved number theoretic and
combinatorial arguments. We therefore present ACMs as both an alternative and a
complement in number theory to the study of nonunique factorization in algebraic
number rings.

After a brief section introducing terms and notation from the theory of nonunique
factorizations, we proceed with the study of factorization in ACMs. ACMs naturally
divide into three classes (regular, singular local, singular global), each exhibiting
starkly different behavior due to their connections with other classes of monoids. In
Section 2, we consider the class of ACMs where a = b. The special case where a =
b = pr, for p a rational prime, is fully described in Proposition 2.2. In Proposition
2.3 we generalize the argument to the case where a = b is not a power of a prime.
Section 3 considers the case of regular ACMs, which are those with a = 1. In
Theorem 3.2, we show that these ACMs are special in the sense that they belong to
the class of Krull monoids (cf. Definition 1.3). Using this Krull structure, Theorem
3.4 gives a striking overview of the factorization properties of these monoids. In
Section 4, we consider the case where a 6= 1. Such ACMs are called singular and
include the ACMs of Section 2. The singular ACMs break into two subclasses:
1) local ACMs where gcd(a,b) = pk for p a rational prime, and 2) global ACMs
where gcd(a,b) is not a power of a prime. After the development of some machinery
applicable to all singular ACMs, we analyze the local case in Theorem 4.9. We show
in Lemma 4.15 that for each global ACM Ma,b there is a constant λ such that every

1 Several authors define Ma,b to equal just the arithmetic progression, so that it is a semigroup.
We shall include a unity, since it does not affect the structure but allows the factorization-theoretic
definitions to be simpler and coincide with the literature.
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nonunit of Ma,b has an irreducible factorization of length at most λ . While this
behavior is more unruly than the behavior encountered in algebraic number rings,
there are still commonalities. For example, in Theorem 4.17, we demonstrate that in
a global ACM there is a finite bound N such that for every element, if we have two
factorizations whose lengths differ by more than N, then there is a factorization of
that element whose length lies between the two other lengths.

1 Terms and Notation

The following notation draws from the theory of nonunique factorizations of rings
and monoids; see the monograph [18] of Geroldinger and Halter-Koch for com-
prehensive references and for undefined terms. The symbol N denotes the natural
numbers {1,2,3, . . .} and N0 = N∪{0}. The integers are denoted Z and for n ∈ Z,
Zn denotes the quotient ring Z/nZ. The image of x ∈ Z in Zn shall be denoted x. If
gcd(k,n) = 1, then ordk(n) shall denote the order of n in the group of units of Zk,
which we denote by Z×k . We use ϕ(n) to denote the Euler totient function of n. We
open by formally defining the objects we are about to study.

Definition 1.1 Given a,b ∈ N with 0 < a ≤ b and a2 ≡ a mod b, the arithmetic
congruence monoid defined by a and b is,

Ma,b := {n ∈ N |n≡ a mod b}∪{1} .

We note that for any a and b satisfying Definition 1.1, Ma,b is both commutative and
cancellative.

We state the main definitions and notation for the theory of nonunique factor-
izations in terms of a general commutative cancellative monoid. In such a general
monoid M, if x,y ∈M then x divides y (written x|y) if there exists a z ∈M such that
xz = y. We will write |M when we need to distinguish monoids; most commonly we
will use |N for the regular “divides” relation in the natural numbers and reserve | for
the “divides” relation in our arithmetic congruence monoids Ma,b. If M is a monoid,
M× will denote the units of M. A nonunit x ∈ M is irreducible (or an atom) if
whenever x = yz for some y,z ∈M, then either y or z is a unit. We write A (M) for
the set of irreducibles of M. A nonunit x ∈ M is prime if whenever x|yz for some
y,z ∈M, either x|y or x|z. As in the theory of integral domains, prime elements are
irreducible but not vice versa.

A monoid M is atomic if every nonunit x can be written as a product of irre-
ducibles of M. The Fundamental Theorem of Arithmetic states that (N,×) is atomic
(and furthermore that the factorizations into irreducibles are unique). Since Ma,b is
a submonoid of the unique factorization monoid (N,×), its atomicity is immediate.
Indeed, if x ∈Ma,b, then x = p1 · · · pn, a unique product of prime numbers in N, and
so x can be written as a product of at most n elements of Ma,b. For the rest of the
article, all monoids will be assumed to be atomic.
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If every nonunit x ∈ M has a unique factorization into irreducibles of M, then
M is said to be factorial. M is factorial if and only if all its irreducibles are prime.
M is factorial if and only if it is isomorphic to the free abelian monoid over its
irreducibles. When M is factorial, the greatest common divisor is well defined: given
a finite, nonempty X ⊆ M, gcd(X) is the unique (up to associates) element g ∈ M
such that g|x for all x ∈ X but for each nonunit h ∈ M, there is an x ∈ X such that
gh6 |x.

For x ∈M \M×, we define

L (x) = {n : there are α1, . . . ,αn ∈A (M) with x = α1 · · ·αn },

which is known as the set of lengths of x. We collect these sets together as L (M) =
{L (x) : x∈M\M× }, the set of lengths of M. The ratio ρ(x)= supL (x)/minL (x)
is called the elasticity of x. The elasticity of the monoid M is defined by

ρ(M) = sup{ρ(x) : x ∈M \M× }

(see [18, Chapter 1.4] or the survey paper [4]). If ρ(M) = 1, then M is called half-
factorial. A survey of half-factorial integral domains and monoids can be found in
[12]. M is said to be fully elastic if for every rational q with 1 ≤ q < ρ(M), there
exists an x ∈M \M× such that ρ(x) = q. Many common objects of study in factor-
ization theory are fully elastic (for instance, the ring of integer-valued polynomials
[15]), but numerical monoids (cf. Definition 2.1) are not ([14]). If there exists an
x ∈M \M× such that ρ(M) = ρ(x), then the elasticity of M is said to be accepted.
Rings of algebraic integers have accepted elasticity. Non-examples also exist (see
[10] and later our Example 4.10), even ones having rational elasticity that is not
accepted. However, these non-examples do not abound in the literature.

Given x ∈M \M×, write its length set in increasing order as

L (x) = {n1,n2, . . . ,nk},

where ni < ni+1 for 1≤ i≤ k−1. The delta set of x is defined by ∆(x) = {ni−ni−1 |
2≤ i≤ k and the delta set of M by

∆(M) =
⋃

x∈M\M×
∆(x)

(see again [18, Chapter 1.4]). As with elasticity, the study of the delta sets of partic-
ular monoids has an active history, and various calculations in specific cases can be
found in [7] and [11].

As in any field of mathematics, we wish to reduce the study of complex objects
into questions about simpler objects. In the realm of factorization theory, the col-
lapsing of structure is achieved using the concept of transfer homomorphisms.

Definition 1.2 Let M and N be commutative, cancellative, atomic monoids and σ :
M→ N be a monoid homomorphism. The map σ is a transfer homomorphism if

• σ(u) ∈ N× for any u ∈M×,
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• σ(x) /∈ N× for any x /∈M×,
• (Surjectivity up to associates) For every a ∈ N, there exists a unit u ∈ N× and an

x ∈M such that σ(x) = ua, and
• whenever x ∈M and a,b ∈ N such that σ(x) = ab, there exist y,z ∈M and units

u,v ∈ N× such that x = yz, σ(y) = ua, and σ(z) = vb.

Intuitively, a transfer homomorphism from M to N ensures that N has (up to noise
from units) all the basic factorization theory of M. Specifically, divisibility relations
from M are preserved in N and LM(x) = LN(σ(x)) for all x ∈M, so that by surjec-
tivity up to associates, L (M) = L (N). The cost of a transfer homomorphism lies
in forgetting which exact factors appear in factorizations. Indeed, for factorization
properties not concerned solely with length sets, this can be a true concern. As we
shall see in Section 2, the ACM M2,2 (namely, the even numbers along with 1) is
half-factorial but not factorial. Nonetheless, M2,2 has a transfer homomorphism into
the free monoid (N0,+), which is factorial. A more surprising example occurs in
Section 3, where the half-factorial ACM M1,4 has a transfer homomorphism into the
factorial monoid B(Z×4 ) (defined in that section). There are other factorization in-
variants, such as the catenary and tame degrees, which also require extra care under
this caveat, but for the scope of the concepts under review in this survey, only the
distinction between factoriality and half-factoriality merits vigilance. In all cases we
shall encounter, the presence or lack of unique factorization can be easily verified.
Thus for our purposes, other than this minor exception, one can consider transfer
homomorphisms as indicating that M and N have the same factorization-theoretic
properties.

As we shall see, many ACMs can be reduced to other better studied monoids in
much the same way as the factorization theory of algebraic number rings transfers to
simpler combinatorial monoids over the class group (see [5] for an introductory ex-
position on algebraic number rings from the perspective of nonunique factorization
theory).

A similar concept to that of a transfer homomorphism is that of a divisor theory.

Definition 1.3 Let M be a monoid. A divisor theory for M is a free commutative
monoid F (P) and a monoid homomorphism σ : M→F (P) satisfying the following
properties:

• σ(u) = 1 for any u ∈M×.
• σ(u) 6= 1 for any u /∈M×.
• For any nonunits x,y ∈M, σ(x)|σ(y) implies x|y.
• For every p ∈ P, there is a finite subset X ⊆M such that p = gcd(σ(X)).

A monoid M which has a divisor theory is said to be a Krull monoid. The generators
P are said to be the prime divisors of M and the quotient monoid F (P)/σ(M)
(which can be shown to be an abelian group) is known as the class group of M.

Krull monoids abound in mathematics. For instance, if D is a Dedekind domain,
D\{0} is a Krull monoid under multiplication. Hence, the multiplicative monoid of
a ring of algebraic integers is a Krull monoid. The definition of a Krull domain, usu-
ally given via v-ideals, can be restated more simply using Krull monoids as follows:
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an integral domain is a Krull domain if and only if its multiplicative monoid is a
Krull monoid (see [23]).

The distinctions between a divisor theory and a transfer homomorphism are sub-
tle. First, a divisor theory need not be (and usually is not) surjective. More subtly,
the property that σ(x)|σ(y) implies x|y is not a consequence of the last property of a
transfer homomorphism. For both transfer homomorphisms and divisor theories, if
σ(x) 6= σ(y), then σ(x)|σ(y) implies σ(y) is reducible and thus so is y. Yet, unlike
a divisor theory, a transfer homomorphism does not guarantee a choice of x as a
witness to the reducibility of y in M.

2 Multiples

The simplest of all ACMs are those in which a = b (i.e. Ma,b = bN∪{1}), the set
of positive multiples of b along with the element 1. If b = 1, then Ma,b = N, which
has unique factorization, so let us assume b > 1. Our analysis shall divide into two
cases, when b is a power of a prime and when it is not.

If b = pr, where p is a prime and r ≥ 1, then all nonunits of Ma,b must be divis-
ible in N by pr. Therefore an element x ∈ Ma,b is reducible if and only if p2r|N x.
This simple observation leads to a complete characterization of Mpr ,pr in terms of
another, well-studied monoid known as a numerical monoid.

Definition 2.1 Given x1, . . . ,xn ∈N, the numerical monoid generated by x1, . . . ,xn,
denoted 〈x1, . . . ,xn〉, is the set of nonnegative linear combinations of the xi. In other
words,

〈x1, . . . ,xn〉=

{
n

∑
i=1

aixi

∣∣∣∣∣ ai ∈ N0

}
.

Numerical monoids have deceptively complicated combinatorial structure. For
instance, if the generators are minimal and have no common factor, there is a least
integer not contained in the numerical monoid. This integer is known as the Frobe-
nius number, and while formulas exist for the Frobenius number of a two- or three-
generator numerical monoid, computation of the Frobenius number in general is
NP-hard. The interested reader may consult [24], a recent reference work on numer-
ical monoids and their occurrence in mathematics. For our purposes, we will only
need to explore a particularly simple and very well-understood class of numerical
monoids: those generated by a full interval of integers, {r,r+1, . . . ,2r−1}. In this
case, set

Sr := 〈r,r+1, . . . ,2r−1〉= (r+N0)∪{0}.

The Frobenius number of Sr is clearly r−1. Though this monoid may resemble an
ACM, bear in mind that the operation on numerical monoids is addition, while it is
multiplication for ACMs.

Proposition 2.2 Let p be prime and r ≥ 1. The map
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σ : Mpr ,pr → Sr = 〈r,r+1, . . .2r−1〉

defined by
σ(x) = vp(x),

where vp(x) is the p-adic valuation of x∈N, is a transfer homomorphism. Therefore
we have the following.

1. Given a nonunit x ∈Mpr ,pr ,

L (x) =
{
` ∈ N

∣∣∣∣⌈ vp(x)
2r−1

⌉
≤ `≤

⌊
vp(x)

r

⌋}
.

2. The elasticity is given by ρ(Mpr ,pr) = 2r−1
r and is accepted.

3. Mpr ,pr is not fully elastic, unless r = 1.
4. Mpr ,pr is half-factorial if and only if r = 1. However it is never factorial.
5. ∆(Mpr ,pr) = {1} if r > 1 and ∆(Mpr ,pr) = /0 if r = 0.
6. Mpr ,pr has no prime elements.

Proof. This function σ is clearly a monoid homomorphism and σ(x) = 0 if and only
if x = 1. Based on the membership criterion for Mpr ,pr , σ clearly maps surjectively
onto the numerical monoid N = 〈r, . . . ,2r− 1〉. We now demonstrate that σ is a
transfer homomorphism. Since neither Mpr ,pr nor the numerical monoid have any
units other than their respective identities, we have only one condition left to verify.
Suppose x ∈Mpr ,pr and n,m ∈ 〈r,r+1, . . . ,2r−1〉 such that σ(x) = n+m. By the
definition of σ , pn+m|Nx. Since n,m≥ r, we find that pn ∈Mpr ,pr and x/pn ∈Mpr ,pr .
Thus x = pn(x/pn), σ(pn) = n, σ(x/pn) = m, and σ is a transfer homomorphism.

Since σ is a transfer homomorphism, for every nonunit x ∈Mpr ,pr , LMpr ,pr (x) =
LN(σ(x)) = LN(vp(x)). Yet for any k ≥ r (in particular k = vp(x)), the length set
of k in N can easily be computed to be equal to the set on the right hand of claim
1. Such a basic computation appears in [11], where it is immediately concluded that
ρ(N) = 2r−1

r , so that N is half-factorial if and only if r = 1. When r = 1, clearly
∆(N) = /0, while ∆(N) = {1} when r > 1 (see [2] or [11]). Because σ is a transfer
homomorphism, the values of all these invariants are identical for Mpr ,pr and Mpr ,pr

is half-factorial if and only if r = 1. However Mp,p is never factorial, for if q is a
prime different than p, then (pq)(pq) = p(pq2) in Mp,p and all these factors are
irreducible. We note that, alternately, claim 4 follows from the main proposition of
[9].

It is a general fact that all finitely-generated monoids have accepted elasticity [3,
Thm. 7]; in this case, the element 2r2− r witnesses the accepted elasticity of N and
hence any preimage under σ , such as p2r2−r, witnesses the accepted elasticity for
Mpr ,pr . Using the transfer homomorphism, we obtain that Mpr ,pr is not fully elastic
for r≥ 2 by [14, Theorem 2.2]; Mp,p is trivially fully elastic since it is half factorial.

Lastly, we show that Mpr ,pr has no prime elements. If x were a prime element of
Mpr ,pr , then x would be irreducible and hence have the form psk for some r ≤ s ≤
2r− 1 and integer k ≥ 1 relatively prime to p. Let m,n > 1 be integers relatively
prime to x. Then x|pr+snmk, but x does not divide either psm or prnk. ut
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Note that the prime p plays no role in the factorization properties of the monoids
Mpr ,pr ; all the invariants can be characterized solely in terms of r, the exponent.
Indeed, for any two primes p and q, Mpr ,pr ∼= Mqr ,qr . This isomorphism is just the
restriction to Mpr ,pr of the isomorphism σ : N→ N given by

σ(x) = xpvq(x)−vp(x)qvp(x)−vq(x),

which swaps all instances of p and q in the prime factorization of x. The case Mpr ,pr

generalizes to a corresponding prime power case in Section 4.1, known as the class
of local ACMs. Even there we shall see that the prime p plays a minimal role in the
factorization properties of the ACM.

In contrast, when b is not a power of a prime, factorization in Mb,b becomes quite
wild. As we shall see in Proposition 2.3, we can exploit the trick from the previous
proof, which showed that Mpr ,pr contains no prime elements, to show that for Mb,b
with b not a prime power, any reducible element has a factorization of length 2.
These monoids are natural examples of the pathological class known as bifurcus
monoids [1].

In the prime power case, we discovered that Mb,b has a transfer homomorphism
to a translate r +N0 of the unique factorization monoid (N0,+). Similarly, in the
case where b is not a power of a prime, we shall show the existence of a transfer
homomorphism from Mb,b to a translate (v1, . . . ,vn)+Nn

0 of the additive, unique-
factorization monoid (Nn

0,+), for an appropriate n≥ 1.

Proposition 2.3 Let b be a positive integer which is not a prime power. In N,
write b as pe1

1 · · · pen
n , where the pi are distinct primes and the ei ≥ 1 and set

N = (e1, . . . ,en)+Nn
0. The map

σ : Mb,b→ N

defined by
σ(x) = (vp1(x), . . . ,vpn(x))

is a transfer homomorphism. Therefore we have the following.

1. Given a nonunit x ∈ Mb,b, write it in N as bkm, with k ≥ 1 and b 6 |Nm. If x is
reducible, then

L (x) = {` ∈ N |2≤ `≤ k} .

2. ρ(Mb,b) = ∞.
3. Mb,b is not fully elastic.
4. ∆(Mb,b) = {1}.
5. Mb,b has no prime elements.

Proof. Let b = pe1
1 · · · pen

n and N be as in the hypotheses. Clearly the map σ is a
monoid homomorphism and σ(x) = (0, . . . ,0) if and only if x = 1. Since every el-
ement of Mb,b is divisible by b, σ maps into N; conversely, given (v1, . . . ,vn) ∈ N,
we know that vi ≥ ei for all i and hence x = pv1

1 · · · pvn
n ∈ Mb,b is a preimage

of (v1, . . . ,vn) under σ . Thus σ is surjective onto N. Since Mb,b and N have no
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units besides the identity, to show σ is a transfer homomorphism, we take an ar-
bitrary x = pv1

1 · · · pvn
n m ∈ Mb,b, where gcd(m,b) = 1. Then σ(x) = (v1, . . . ,vn).

Suppose (v1, . . . ,vn) = (w1, . . . ,wn)+ (u1, . . . ,un), where wi,ui ≥ ei for all i. Then
y = pw1

1 · · · pwn
n m and z = pu1

1 · · · pun
n are preimages of (w1, . . . ,wn) and (u1, . . . ,un),

respectively, in Mb,b and x = yz. So σ is indeed a transfer homomorphism.
All the remaining claims may be computed in N, using σ , however we shall argue

them directly in Mb,b. Let p be a prime of N that divides b and set v = vp(b). Given
a nonunit x ∈ Mb,b, with x = bkm for some m not divisible by b, we can factor x
as b · · ·b · (bm), a product of k irreducibles. No factorizations of x in Mb,b may be
longer, since each irreducible must be divisible by b in N. If x is reducible, then
b2|N x, so we write

x =
(

x
bpvp(x)−2v

)
(bpvp(x)−2v) .

Both factors on the right are in Mb,b since they are divisible in N by b. However they
are irreducibles; the factor on the right is clear because b is not a power of p, while
the factor on the left has a p-adic valuation of v, so it can be divisible by b exactly
once. Therefore we have shown every reducible element of Mb,b can be written as
a product of two irreducibles. Now, if x is reducible, then for any 2 < ` < k, we
can factor x as b · · ·b · y1 · y2, where y1y2 is a factorization of bk−`+2m as a product
of two irreducibles (note bk−`+2m ∈ Mb,b is reducible). Thus we have produced a
factorization of x of length ` and the length set of x has the prescribed form.

From this explicit description of the length set, the values of the elasticity and
delta set of Mb,b are immediate. It is also clear that Mb,b is not fully elastic since
ρ(x) = k/2 for some k ≥ 2 for any nonunit x ∈Mb,b. If x ∈Mb,b is a nonunit, then
x|(p1x)(p2x) but x6 |p1x and x6 |p2x since b is not a power of a prime. So Mb,b has no
prime elements. ut

Despite being submonoids of the unique factorization monoid (N,×), these Mb,b
exhibit factorization properties very unlike the uniqueness enjoyed by N. Yet far
from being unusual submonoids of N, these Mb,b possess a particularly simple form.
They can even be expressed as finite intersections of the more well-behaved Mpr ,pr ,
as stated in the proposition below, whose proof is clear. In particular, by Proposition
2.2, for b a squarefree composite number, the badly behaved monoid Mb,b can be
expressed as a finite intersection of half-factorial monoids Mp,p.

Proposition 2.4 If b = pe1
1 · · · pen

n ∈ N, where all the pi are distinct and prime and
ei ≥ 1 for all 1≤ i≤ n, then

Mb,b =
n⋂

i=1

Mp
ei
i ,p

ei
i
.

Proposition 2.4 will parallel Proposition 4.14 below, just as the local/global di-
chotomy of Section 4 parallels the dichotomy in this section between b a power of
a prime and b not a power of a prime.
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3 Regular Arithmetic Congruence Monoids

The case a = 1 bears attention not only mathematically, but historically. The ACMs
M1,b are sometimes called Hilbert monoids in honor of David Hilbert’s early use of
M1,4 to demonstrate the occurrence of nonunique factorization in natural number-
theoretic settings (see [8]). Mathematically, they merit distinction from other ACMs
as they are the ACMs which fall into the important class of Krull monoids, a gener-
alization of Dedekind domains. Our primary goal for this section will be to demon-
strate the Krull property for these monoids. We begin with an elementary, yet key,
observation.

Lemma 3.1 Let x,y,z ∈ N such that x = yz. If x,y ∈M1,b then z ∈M1,b.

Proof. We have 1≡ x = yz≡ z mod b, so z ∈M1,b. ut

In more compact notation, for any x,y ∈M1,b, if x|Ny, then we already have x|y.
In factorization theory parlance, we say that M1,b is saturated in N. Note that the
saturation of M1,b is in stark contrast to Mb,b where, for instance, 2|N 6 but 2 6 |6 in
M2,2.

Note that if x ∈M1,b and p is prime in N with p|Nx, then gcd(p,b) = 1. Indeed,
since x≡ 1 mod b, p must be invertible modulo b. Therefore, p belongs to the set of
primes P = {p ∈N | p is prime and gcd(p,b) = 1}. Let F (P) be the free commuta-
tive monoid generated by P, which we identify with its isomorphic copy in (N,×).
Under this identification, M1,b will be a submonoid of F (P). This observation al-
lows us to prove the following theorem, first shown by Halter-Koch [21].

Theorem 3.2 Let P = {p ∈ N | p is prime and gcd(p,b) = 1}. The free monoid
F (P) ≤ (N,×) and the homomorphism ι : M1,b ↪→ F (P) form a divisor theory
for M1,b. Thus M1,b is Krull.

Proof. Since ι is injective, for any u ∈ M1,b, ι(u) = 1 if and only if u = 1. Fur-
thermore, if for some nonunits x,y ∈ M1,b we have ι(x)|ι(y), then x|y in N, so
Lemma 3.1 gives us that x|y in M1,b. Lastly, we must show that for every p ∈ P
there is a finite subset X ⊆M such that p = gcd(ι(X)). Let such a p be given. By
Dirichlet’s Theorem, we may choose two distinct primes q1,q2 ∈ N distinct from p
such that q1 ≡ q2 ≡ p−1 mod b (here we use gcd(p,b) = 1). Therefore q1,q2 ∈ P;
pq1, pq2 ∈M1,b; and p = gcd(pq1, pq2) = gcd(ι(pq1), ι(pq2)). ut

In fact, M1,b being Krull is an instance of a general theorem that all saturated
submonoids of factorial monoids are Krull [18, Prop. 2.4.4 (3)]. All other ACMs
besides N are not Krull. For ACMs that are multiples, this is due to their corre-
spondence with numerical monoids and translates of (Nn,+), both of which are not
Krull; for general singular ACMs this shall be proven in Theorem 4.8.

A thorough reference for the theory of Krull monoids can be found in [18]; a
gentle introduction to this theory can be found in [5], where most of the facts below
involving block monoids are developed in detail for algebraic number rings, a par-
ticularly well-behaved class of Krull monoids. We shall summarize these facts from
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the theory of Krull monoids without further citation until we return to dealing with
regular ACMs again specifically.

As mentioned in the discussion of divisor theories and the Krull property in Sec-
tion 1, Krull monoids have a notion of class group. Namely, for a Krull monoid
M with divisor theory σ : M→F (P), the quotient monoid F (P)/σ(M) forms an
abelian group G generated (as a monoid) by a subset S equal to the image of P under
this quotient. The Krull monoid M can then be related to a combinatorial structure
built out of G and S, known as the block monoid.

Definition 3.3 Let G be an abelian multiplicative group and S ⊆ G be nonempty.
Let F (S) be the free commutative monoid generated by S, with elements written as
[s1]

e1 · · · [sn]
en . Let E be the identity of F (S). Given A = [s1]

e1 · · · [sn]
en ∈F (S), the

length of A, denoted |A|, is ∑
n
i=1 ei.

There is a natural evaluation map θ : F (S)→ G given by θ([s1]
e1 · · · [sn]

en) =
se1

1 · · ·sen
n . The block monoid of G over S is the monoid defined as:

B(G,S) = {[s1]
e1 · · · [sn]

en ∈F (S) |θ([s1]
e1 · · · [sn]

en) = 1} .

In other words, the block monoid B(G,S) corresponds to all unordered se-
quences over S, such that the product of these terms in G yields the identity. The
set B(G,S) is clearly a submonoid of F (S) and hence is atomic since F (G,S) is.
Moreover, it is a saturated submonoid of F (S). Block monoids have been studied
extensively in the literature and numerous factorization-theoretic properties of them
are known (see [5] and [18]). For example, the elasticity of B(G,S) relates to an
important value known as the Davenport constant, D(G,S), of G with respect to
S. The Davenport constant is defined as the maximal length of an irreducible of
B(G,S). When G is an infinite group and S = S−1, for example, then D(G,S) = ∞,
but for finite groups it is easily shown that D(G,S)≤ |G|. For any group G and sub-
set S⊆G, it is known that ρ(B(G,S))≤max{1,D(G,S)/2}, with equality in many
cases, such as when S = G.

If M is Krull, there is a transfer homomorphism φ : M → B(G,S), where
G = F (P)/σ(M) is the class group of M and S = {pσ(M) | p ∈ P} is the subset
of classes which contain elements of P. For each m ∈M, we can consider the corre-
sponding element σ(m) = [p1]

e1 · · · [pn]
en of σ(M)≤F (G). Using this expression,

we now are able to define φ compactly as:

φ(m) = [s1]
e1 · · · [sn]

en ,

where for each i, si is the image of pi in G. In the next theorem, we explicitly
determine the class group G and subset S for a regular ACM M1,b. We shall then use
the natural transfer homomorphism to the block monoid B(G,S) to conclude many
factorization-theoretic properties of M1,b.

The identity of the class group G is easy to surmise based on our previous
knowledge. Let x ∈ M1,b be given and factor x in N as pe1

1 · · · pen
n . We know all

the pi ∈ P. Since x ≡ 1 mod b, each pi is necessarily an invertible element of Zb,
i.e. pi ∈ Z×b . Conversely, if we have primes pi ∈ P, then pi ∈ Z×b for all i. If, fur-
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thermore, pe1
1 · · · pen

n = 1, then x = pe1
1 · · · pen

n belongs to M1,b. Thus our class group
is G = Z×b , as we shall now verify.

Theorem 3.4 The class group G of M1,b is Z×b and the corresponding subset S also
equals Z×b . The map

φ : M1,b→B(Z×b ,Z
×
b )

defined by
φ(x) = φ(pe1

1 · · · p
en
n ) = [p1]

e1 · · · [pn]
en ,

is a transfer homomorphism. Thus, we have the following.

1. M1,b is half-factorial if and only if b = 2,3,4,6.
2. M1,b is factorial if and only if b = 2.

3. The elasticity is ρ(M1,b) =
D(B(Z×b ))

2 .
4. The elasticity of M1,b is accepted.
5. M1,b has full elasticity.
6. ∆(M1,b) = {1, . . . ,c} for some c ∈ N.
7. M1,b contains infinitely many prime elements.

Proof. We use the notation of Theorem 3.2. As shown in that theorem, F (P) and
the map ι : M1,b ↪→F (P) form a divisor theory for M1,b. Here F (P) is being iden-
tified with its isomorphic copy in (N,×). Set σ = ι . Let n,n′ ∈ F (P) be given
such that n ≡ n′ mod b. By Dirichlet’s Theorem, we may choose a prime q ∈ N
distinct from n and n′ (if they were prime) such that q ≡ n−1 mod b. Then nq and
n′q are both elements of M1,b, so σ(n) and σ(n′) are equivalent modulo σ(M1,b).
Conversely, if n,n′ ∈F (P) and n 6≡ n′ mod b, then for no m ∈F (P) do we have
both nm ∈M1,b and n′m ∈M1,b. Therefore G is isomorphic to the image of F (P) in
(Zb,×). By Dirichlet’s Theorem, for every ω ∈ Z×b , there is a p∈ P such that p=ω ,
so S ⊇ Z×b . Yet we observed prior to this theorem that a product p1 · · · pk of primes
in N is an element of M1,b if and only if gcd(pi,b) = 1 for all i and p1 · · · pk ≡ 1
mod b. In other words, G is contained in Z×b and thus G = S = Z×b .

Therefore we have our transfer homomorphism φ : M1,b→B(Z×b ,Z
×
b ), and all

factorization properties relating to lengths are identical for M1,b and B(Z×b ,Z
×
b ).

It is well-known (see [18] or [5], for example) that if G is a finite abelian group,
then B(G,G) is half-factorial if and only if |G| = 1 or 2. For other finite abelian
groups, ρ(B(G,G)) =D(G)/2, where D(G) is the Davenport constant of G. In both
cases, the elasticity is accepted. Thus M1,b is half-factorial if and only if |Z×b | ≤ 2,
which is the case precisely when b = 2,3,4, or 6. The case M1,2 is the odd numbers,
which is factorial by the Fundamental Theorem of Arithmetic. For all other b, one
can easily construct a product with distinct factorizations. For example: 4× 25 =
10×10 in M1,3; 9×49 = 21×21 in M1,4; and 25×121 = 55×55 in M1,6.

Geroldinger and Yuan [20, Theorem 1] recently determined that if G is a finite
abelian group, then ∆(B(G,G)) is the set of consecutive integers {1,2, . . . ,c} up to
some integer c ≥ 1. For many finite groups G, they give an explicit value of c in
terms of another factorization invariant of B(G,G) known as the catenary degree.
Namely, for those groups c is 2 less than the catenary degree.
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Lastly, we demonstrate that M1,b contains infinitely many prime elements. By
Dirichlet’s Theorem, there are infinitely many primes p ∈ N which are equivalent
to 1 modulo b. These are all prime by Lemma 3.1. From the existence of prime
elements and accepted elasticity, we conclude M1,b is fully elastic by [6, Corollary
2.2]. ut

Example 3.5 Notice that the use of Dirichlet’s Theorem in the first part of the proof
of Theorem 3.4 indicates that each divisor class of the the class group Z×b of M1,b
contains countably many prime divisors. Hence, by part 2 above, M1,3, M1,4 and
M1,6 are half-factorial Krull monoids with class groups isomorphic to Z2 and equal
distributions of prime divisors in each divisor class. Since all three of these monoids
are reduced, by [18, Theorem 2.5.4] it follows that M1,3 ∼= M1,4 ∼= M1,6. Hence,
ACMs with different defining moduli can still be isomorphic.

Example 3.6 Consider the special case implied by Theorem 3.4 when b = p where
p is a rational prime. Then Z×p ∼= Zp−1 is a cyclic group, and since D(B(Zp−1)) =

p−1, it follows that ρ(M1,p)=
p−1

2 . It is easy here to construct a factorization where
the elasticity is attained. Let x be a primitive root modulo p. By Dirichlet’s Theorem,
choose distinct primes p1 and p2 so that in Z×p we have x = p1 and x−1 = p2. Then
p1 p2, pp−1

1 and pp−1
2 are all atoms of M1,p. Moreover z = (p1 p2)

p−1 = pp−1
1 pp−1

2
yields ρ(z) = p−1

2 . That the class group is cyclic yields even further results. For
instance, by [13, Proposition 5.3.3], ∆(B(Zn)) = {1,2, . . . ,n− 2} for all n ∈ N.
Taking n = p−1 we have ∆(M1,p) = {1,2, . . . , p−3}.

4 Singular Arithmetic Congruence Monoids

If a 6= 1, the ACM is known as singular. We have already encountered one example
of a singular ACM in Section 2, namely a = b. However, for a given modulus b,
there are generally many singular ACMs.

Proposition 4.1 Let b > 1 be given and factor b = pe1
1 · · · per

r as a product of primes
in N. There are 2r choices of a with 0 < a≤ b such that Ma,b is an ACM. In partic-
ular, 2r−1 of them will be singular.

Proof. Suppose Ma,b is an ACM for this fixed b. For each 1≤ i≤ r, we have a2 ≡ a
mod pei

i , so pei
i |a(a− 1). Since pi is prime, we conclude pei

i |a or pei
i |a− 1. Thus,

each a for which Ma,b is an ACM satisfies the system of linear congruences:

a≡ c1 mod pe1
1

...
a≡ cr mod per

r ,

where for each i, ci is either 1 or pei
i . Conversely, by the Chinese Remainder Theo-

rem, for all choices of c1, . . . ,cr, where each ci is either 1 or pei
i , we obtain an a with
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0 < a≤ b such that a2 ≡ a mod b, i.e., Ma,b is an ACM. There are 2r such choices
for the ci and only one of them (all ci = 1) produces the regular ACM M1,b.

The structure of a singular ACM depends heavily upon the factors in common
between a and b. Let d = gcd(a,b) and f = b/d. It is easy to see from the con-
gruence a2 ≡ a mod b (or the previous proof) that d = 1 if and only if a = 1, so a
singular ACM must always have d > 1. The arithmetic congruence monoids of the
form Mb,b studied in Section 2 fall into the class of singular ACMs. In the initial
exposition for this section, we shall allow ACMs of multiples as possibilities, even
though we have already studied many of their properties in Section 2. One of the
goals of this initial exposition is to show that singular ACMs are not Krull, a fact
which we did not yet demonstrate for ACMs of multiples.

Singular ACMs are divided into two subclasses depending on d: a local ACM
has d a power of prime, while a global ACM has d divisible by at least two distinct
primes. In the later subsections on local and global singular ACMs, we shall exclude
the possibility that a = b.

Lemma 4.2 [7, Thm. 2.1] Let a,b ∈N with 0 < a≤ b and a2 ≡ a mod b. Suppose
d = gcd(a,b)> 1 and set f = b/d. Then gcd(a, f ) = gcd(d, f ) = 1 and

Ma,b = Md,d ∩M1, f .

Conversely, given d, f ∈ N with d > 1, f ≥ 1 and gcd(d, f ) = 1, then there exists a
unique a ∈ N such that 0 < a < d f and gcd(a,d f ) = d, so that Ma,d f is a singular
ACM satisfying the above intersection.

Proof. As in the proof of Proposition 4.1, let b = pe1
1 · · · per

r . For each 1≤ i≤ r, we
have a≡ ci mod pei

i , where ci = 1 or ci = pei
i . In either case, we have Ma,b ⊆Mci,p

ei
i

and by the Chinese Remainder Theorem,

Ma,b =
r⋂

i=1

Mci,p
ei
i
.

Let I = {1≤ i≤ r |ci = 1} and J = {1, . . . ,r}\I. For each i∈ I, ci = 1 and so pi 6 |N a.
Hence pei

i |N f . Conversely, for each i ∈ J, ci = pei
i . Since a ≡ ci mod pei

i , we have
pei

i |Na and thus pei
i |Nd. Together, we find f = ∏i∈I pei

i and d = ∏i∈J pei
i and that

gcd(a, f ) = gcd(d, f ) = 1. By the Chinese Remainder Theorem,⋂
i∈J

Mci,p
ei
i
=
⋂
i∈J

Mp
ei
i ,p

ei
i
= Md,d and

⋂
i∈I

Mci,p
ei
i
=
⋂
i∈I

M1,pei
i
= M1, f

Thus Ma,b = Md,d ∩M1, f , as desired. The converse claim follows immediately from
the proof of Proposition 4.1 by taking b = d f = pei

1 · · · per
r and having a ≡ pei

i
mod pei

i if pi|Nd and a ≡ 1 mod pei
i if pi|N f . The uniqueness of a is guaranteed

by the Chinese Remainder Theorem. ut

We already saw in Lemma 3.1 that regular ACMs are saturated in N. Using the
above characterization of singular ACMs as intersections of a regular ACM with an
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ACM of multiples, we are able to demonstrate a weak form of saturation for singular
ACMs.

Lemma 4.3 [7, Corollary 2.2] Let a,b,d = gcd(a,b), and f have the usual assump-
tions. Let x,y ∈Ma,b with y|N x. Then:

1. x/y ∈Ma,b if and only if d|N x/y, and
2. if x ∈A (Ma,b), then y ∈A (Ma,b).

Proof. For the proof of (1), by Lemma 4.2, x,y∈M1, f so by Lemma 3.1 x/y∈M1, f .
By Lemma 4.2 again, x/y ∈Ma,b if and only if x/y ∈Md,d , which is equivalent to
d|N x/y. Claim (2) is immediate from (1). ut

Proposition 4.4 Let a,b,d = gcd(a,b), and f = b/d have the usual assumptions
for a singular ACM. Then Ma,b has no prime elements.

Proof. Let q be a prime number in N with gcd(q,d) = 1 and q ≡ 1 mod f . By
Lemma 4.2, for any x ∈Ma,b with x > 1, we must have xq ∈Ma,b and xq2 ∈Ma,b.
Now let such an x be given. Since q /∈ Ma,b, we cannot have x|xq in Ma,b. Yet
x(xq2) = (xq)(xq), so x cannot be prime in Ma,b. ut

Although Ma,b has no primes, it has infinitely many irreducibles as shown by the
following simple argument from [7].

Proposition 4.5 Let a,b,d = gcd(a,b), and f = b/d have the usual assumptions. If
x ∈Ma,b is reducible, then x+b is irreducible.

Proof. If x = yz in Ma,b, then by Lemma 4.2 d2|N x. If x+b is also irreducible, then
d2|N x+b, so d2|N b. But gcd(d,b/d) = gcd(d, f ) = 1 by Lemma 4.2, a contradic-
tion. ut

In the singular ACM Mp,2p, we can easily show that x is irreducible if and only
if p2|x, so in this monoid the irreducibles are periodic with period p.

Open Question 4.6 Determine the distribution of the irreducibles in Ma,b. Are they
(eventually) periodic?

Our remaining goal for this introductory exposition on singular ACMs is to show
they are not Krull. This fact was originally proven by Halter-Koch [21, Thm. 1] and
our proof shall follow similar lines. Since gcd(d, f ) = 1, the integer γ = ord f (d)≥ 1
exists. Thus dγ ≡ 1 mod f and dγ ∈Ma,b by Lemma 4.2. This element dγ shall be
central to our analysis of Ma,b due to the following proposition.

Proposition 4.7 Let γ = ord f (d). For all nonunits x1, . . . ,xγ+1 ∈ Ma,b, we have
dγ |x1 · · ·xγ+1.

Proof. Let nonunits x1, . . . ,xγ+1 ∈ Ma,b be given. Write each xi as dkimi, where d 6
|Nmi for all i and let K = ∑

γ+1
i=1 ki. Since ki ≥ 1 for all 1 ≤ i ≤ r by Lemma 4.2,

K−γ ≥ 1 and so d|NdK−γ m1 · · ·mγ+1. Because x1 · · ·xγ+1 = (dγ)(dK−γ m1 · · ·mγ+1),
by Lemma 4.3 we conclude dγ |x1 · · ·xγ+1. ut
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Theorem 4.8 Let a,b ∈ N with 0 < a ≤ b such that Ma,b is a singular ACM. Then
Ma,b is not Krull.

Proof. Let d = gcd(a,b)> 1 and let γ = ord f (d). Then dγ ∈Ma,b. Suppose that Ma,b
is Krull. By definition, there is a free commutative monoid F (P) and a monoid
homomorphism σ : Ma,b → F (P) yielding a divisor theory. Consider X = σ(dγ)
and write X = Pe1

1 · · ·Pen
n . By Proposition 4.7, dγ |xγ+1 for any nonunit x ∈Ma,b and

thus X must divide σ(x)γ+1.
Consider a. By Lemma 4.2, we know a ≡ 1 mod f and we can write a = dkm,

for some k,m ∈ N with d 6 |N m. Note that k ≤ γ since dγ ∈ Ma,b and a is the least
element of Ma,b greater than 1. Since gcd(a, f ) = 1, by Dirichlet’s Theorem we may
pick a prime q ∈ N such that q≡ m−1 mod f and gcd(d,q) = 1. For all v≥ 1,

(dγ−kqa)vγ+1 = (dγ qm)vγ+1 = (dγ)vγ(dγ qvγ+1mvγ+1) .

By the choice of q and γ , we have dγ qm ∈ M1, f and dγ qvγ+1mvγ+1 ∈ M1, f . Since
d|N dγ qvγ+1mvγ+1, we conclude dγ qvγ+1mvγ+1 ∈ Ma,b by Lemma 4.2. Similarly
dγ−kqa ∈ Ma,b, so in Ma,b we find (dγ)vγ |(dγ−kqa)vγ+1 for all v ≥ 1. Let B =
σ(dγ−kqa) = σ(dγ qm). Since X |Bγ+1 and we are working in a free commutative
monoid, we can write B as

B = Pg1
1 · · ·P

gn
n Qh1

1 · · ·Q
ht
t ,

where gi ≥ 1 for all 1 ≤ i ≤ n and Pi 6= Q j for any 1 ≤ i ≤ n and 1 ≤ j ≤ t. Be-
cause σ is a monoid homomorphism and (dγ)vγ |(dγ−kqa)vγ+1 for all v≥ 1, we find
Xvγ |Bvγ+1 for all v≥ 1. In other words, for all 1≤ i≤ n and all v≥ 1,

vγei ≤ (vγ +1)gi .

Since v ≥ 1 arbitrary and ei,gi ∈ N, we conclude ei ≤ gi for all i. Thus X |B. But σ

is a divisor theory, so in Ma,b we find dγ |dγ qm. Therefore qm ∈ Ma,b, but this is a
contradiction by Lemma 4.2 since d 6 |N qm. So no such divisor theory exists and Ma,b
is not Krull. ut

This concludes the general statements we can make about singular ACMs. For
the remaining two subsections, assume a < b.

4.1 Local Arithmetic Congruence Monoids

In this section, we shall assume d = pα , for p prime and α ≥ 1. Since gcd(d, f ) =
1, p has finite order ord f (p) modulo f . Choose a least β ≥ α such that pβ ≡ 1
mod f ; by Lemma 4.2, pβ is the least power of p in Ma,b. In the previous section
we had chosen a least γ ≥ 1 such that dγ ≡ 1 mod f ; since d = pα , we conclude
γ = ord f (pα) and γ|Nord f (p). Furthermore, β is a multiple of ord f (p), so γ|Nβ but
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they need not be equal. The invariants α and β shall prove to be pivotal for many of
the factorization properties of Ma,b.

Theorem 4.9 Let Ma,b be a singular ACM with d = gcd(a,b) = pα for some p ∈N
prime and α ≥ 1. Let β ≥ α be minimal such that dβ ∈Ma,b.

1. [9, Theorem 2.4 (1)] The elasticity of Ma,b is

ρ(Ma,b) =
α +β −1

α
.

2. [9, Theorem 2.4 (4)] ρ(Ma,b)< 2 if and only if a = pα .
3. [9, Theorem 2.4 (3)] Ma,b is half factorial if and only if a = p.
4. [7, Theorem 3.1] The Delta set of Ma,b is

∆(Ma,b) =


/0 if α = β = 1
{1} if α = β > 1

N∩ [1, β

α
) if β > α .

Proof. (1). If x ∈ Ma,b and vp(x) ≥ α +β , then x = (pβ )(x/pβ ). By Lemma 4.2,
x, pβ ∈M1, f and so by Lemma 3.1, x/pβ ∈M1, f as well. Furthermore, pα |N x/pβ ,
so by Lemma 4.2, x/pβ ∈Ma,b. Thus x is reducible. Hence all irreducibles x of Ma,b
have vp(x)≤ α +β −1. On the other hand, all irreducibles x of have vp(x)≥ α by
Lemma 4.2. Consequently, if y ∈ Ma,b with y > 1, then any factorization of y into
irreducibles involves at most vp(y)/α irreducibles and at least vp(y)/(α + β − 1)
irreducibles. Thus for all nonunit y ∈Ma,b,

ρ(y)≤
vp(y)

α

vp(y)
α+β−1

=
α +β −1

α
.

To show that this fraction equals ρ(Ma,b), we must find elements y whose elasticities
approach this value. By Dirichlet’s Theorem, there exist primes q and r distinct
from p such that q ≡ pβ−α+1 mod f and r ≡ pβ−α mod f . By Lemma 4.2, both
pα+β−1q and pα r are elements of Ma,b. Since pα |Nx for all nonunits x ∈Ma,b and
pβ is the least power of p in Ma,b, both pα+β−1q and pα r are irreducible. Note that
qβ ≡ rβ ≡ 1 mod f since pβ ≡ 1 mod f , so for similar reasons as above, both
pα qβkr and pα rβk+1 are irreducibles of Ma,b for any k ≥ 0. Therefore we have for
all k ≥ 1:

(pα+β−1q)kαβ (pα rβk(α+β−1)+1) = (pα r)kβ (α+β−1)(pα qβkα r) .

The factorization on the left has kαβ +1 irreducibles, while the one on the right has
kβ (α +β −1)+1 irreducibles, so the elasticity of Ma,b is bounded below by:

ρ((pα+β−1q)kαβ (pα rkβ (α+β−1)+1))≥ kβ (α +β −1)+1
kαβ +1

,
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which goes to (α +β −1)/α as k goes to infinity.
Part (3) clearly follows from (1) as the following statements are equivalent:

1. Ma,b is half factorial,
2. ρ(Ma,b) = 1,
3. β = 1,
4. p ∈Ma,b, and
5. a = p by minimality of a.

For part (2), observe that if β > α , then ρ(Ma,b) ≥ (α +(α + 1)− 1)/α = 2. So
ρ(Ma,b)< 2 implies β = α , so that d = pα ∈Ma,b. By minimality of a, we conclude
a = d = pα . Conversely, if a = d = pα , then α = β and ρ(Ma,b)< 2.

The proof of part (4) is involved; the interested reader should consult [7]. ut

To this point, we have seen that whenever an ACM has finite (and rational) elas-
ticity, its elasticity is accepted. This is no longer the case for local ACMs, as the
following example testifies.

Example 4.10 Consider M4,6. Then p= 2, α = 1, and β = 2 since clearly 4∈M4,6.
By Theorem 4.9, ρ(M4,6) = 2. We also know d = p and f = 3, so by Lemma 4.2,
M4,6 = M2,2 ∩M1,3. Consequently, we may characterize the irreducibles of M4,6.
If 4m ∈ M4,6, then m ≡ 1 mod 3. If m = m1m2 where m1,m2 ≡ 2 mod 3, then
4m = (2m1)(2m2) in M4,6. Thus 4m is irreducible if (and only if) m is a product
of primes, all equivalent to 1 modulo 3. Call irreducibles of this form type “A”
irreducibles.

We are left with considering x ∈M4,6 of the form x = 2m, where m is odd and,
necessarily, m ≡ 2 mod 3. Any such x is irreducible since it is not divisible (in N)
by 4. Call irreducibles of this form type “B” irreducibles.

Suppose x ∈M4,6 with ρ(x) = 2. Fix a longest factorization of x and suppose it
has s type “A” irreducibles and t type “B” irreducibles. Then v2(x) = 2s+ t. Fix a
shortest factorization of x and suppose it has u type “A” irreducibles and v type “B”
irreducibles. Then v2(x) = 2u+ v. But 2 = ρ(x) = (s+ t)/(u+ v), so

s+ t = 2(u+ v) = v2(x)+ v = 2s+ t + v .

Thus v+s= 0 and so v= s= 0. The elasticity tells us 2u= t, i.e. x may be written as
a product of u many irreducibles of type “A”, and also as a product of 2u irreducibles
of type “B”. As the former product, x = 4um, where m is a product of primes, all
equivalent to 1 modulo 3. As the latter product, x = 22um1 · · ·m2u, where each mi is
odd and mi ≡ 2 mod 3. But this is absurd, since each mi would consist of a product
of odd primes all equivalent to 1 modulo 3. Thus there is no x∈M4,6 with ρ(x) = 2.

Note that M4,6 falls into the third class of local ACMs with respect to their Delta
sets. Here α = 1 and β = 2 so ∆(M4,6) = {1,2}.

Although there exist examples of local ACMs without accepted elasticity, Banis-
ter, Chaika, Chapman, and Meyerson have demonstrated a large class of local ACMs
which do have accepted elasticity.
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Theorem 4.11 [10, Theorem 1] Let Ma,b be a singular, local ACM with d =
gcd(a,b) = pα for some prime p ∈ N and some α ≥ 1. Set f = b/d and choose
β ≥α minimal such that pβ ∈Ma,b. Let ω be the least residue of α modulo ord f (p).
Suppose a 6= d and p is a primitive root modulo f , so that ord f (p) = ϕ( f ). Then
Ma,b has accepted elasticity if and only if

1. ϕ( f )> 5, and
2. ω ≥ 1+ ϕ( f )

2 .

Example 4.12 Suppose Ma,b satisfies the hypotheses of Theorem 4.11 and assume
Ma,b has accepted elasticity. Since p is a primitive root modulo f , ord f (p) = ϕ( f )>
5 by condition 1. Condition 2 then forces α ≥ 4. Hence, for α = 1,2 or 3, the
elasticity of an Ma,b satisfying the hypotheses of Theorem 4.11 is not accepted.
Examples of accepted and non-accepted elasticity of monoids of this type can eas-
ily be constructed, even in the case where α = 4. For instance, it is easy to show
that M249,2411 does not satisfy condition 2 above since ω = α = 4 < 1+ϕ(11)/2.
Hence M249,2411does not have accepted elasticity. The ACM M244,249 does satisfy
conditions 1 and 2 and hence has accepted elasticity. In this case, α = 4 and
β = ϕ(9) = 6 yields that ρ(M244,249) =

9
4 which is realized by the irreducible fac-

torization [(24)(17)(5)]9 = [(29)(179)][(29)(53)]3.

While not much is known about singular ACMs which are fully elastic, we do
have one partial result.

Theorem 4.13 [9, Corollary 3.3] Let Ma,b be a local singular ACM with d = pα .
Suppose ρ(Ma,b)< 2. Then Ma,b is fully elastic if and only if α = ord f (p).

Proof. By Theorem 4.9.2, ρ(Ma,b) < 2 if and only if a = d = pα . By Lemma 4.2,
since a = pα ∈ Ma,b, we must have pα ≡ 1 mod f so ord f (p) divides α . Con-
versely, if ord f (p) divides α , then pα ∈Ma,b by Lemma 4.2. Since d = pα divides
every element of Ma,b, we find that a = d = pα by the minimality of a. Thus we
have established that we are in the exact situation proscribed by Corollary 3.3 of
[9], from which we conclude that Ma,b is fully elastic if and only if α = ord f (p).

4.2 Global Arithmetic Congruence Monoids

We begin by observing that every global ACM can be written in terms of local
ACMs.

Proposition 4.14 [7, Section 4] A global ACM Ma,b is a finite, unique intersection
of local ACMs. Specifically, if d = gcd(a,b) = pα1

1 · · · pαn
n and f = b/d, then

Ma,b =
n⋂

i=1

Mai, f p
αi
i

where ai is the least reside of a modulo f pαi
i .
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Proof. The proof follows easily using the Chinese Remainder Theorem. ut

Though this observation may appear to be valuable upon first glance, it is actually
of little utility for questions of nonunique factorization. As we saw in Section 2
with Mb,b for b not a power of a prime, the intersection of a finite number of well-
behaved ACMs can still result in an ACM with poorly behaved factorization theory.
Similarly here, we may find Ma,b to be an intersection of local ACMs all of which
have finite elasticity, yet the intersection Ma,b will never have finite elasticity due to
the following lemma.

Lemma 4.15 [7, Theorem 4.2][9, Theorem 2.3] Let Ma,b be a global ACM. There
exists λ ≥ 3 such that for all nonunits x ∈Ma,b, minL (x)< λ .

In particular, if d = pα1
1 · · · pαn

n , then

λ ≤min
{

γ +1+
⌈

ord f (pi)

αi

⌉ ∣∣∣∣ 1≤ i≤ n
}

Proof. This result was proven in both [7] and [9], with [7] giving a constructive
method for obtaining small (occasionally sharp) values of λ . Our proof differs from
both of these proofs in the interest of simplicity.

By Lemma 4.2, Ma,b = Md,d ∩M1, f where gcd(d, f ) = 1, and so there exists a
least γ ≥ 1 such that dγ ≡ 1 mod f . Write d = pα1

1 · · · pαn
n , where n≥ 2 and αi ≥ 1

for all i≤ n. We shall prove the existence of γ and its bound using p1; the proof for
other 1≤ i≤ n is analogous.

We may choose a minimal 1 ≤ v ≤ γ such that there exists u ≥ 0 with dv pu
1 ∈

Ma,b. For this v, choose the minimal u ≥ 0; then dv pu
1 is irreducible in Ma,b. Since

p
ord f (p1)

1 ≡ 1 mod f , we must have 0≤ u < ord f (p1).
Now let x ∈Ma,b and write x = dkm, where d 6 |N m. Clearly, maxL (x)≤ k since

every irreducible factor of x must be divisible by d in N by Lemma 4.2. Thus, if
k ≤ γ +dord f (p1)/α1e, we are done. Let us assume k > γ +dord f (p1)/α1e, so that
k ≥ γ + 1+ ord f (p1)/α1 > v+ 1+ u/α1. Write m = ps

1`, where p1 6 |N ` and s ≥ 0.
Thus vp1(x) = kα1 + s. Since k > v+1+u/α1, the integer

z =
⌊
(k− v−1)α1 + s−u

ord f (p1)

⌋
is nonnegative. We have the following equation,

x = dk ps
1`= (dv p

z ord f (p1)+u
1 )(p

(k−v)α1+s−z ord f (p1)−u
1 p(k−v)α2

2 · · · p(k−v)αn
n `) .

Set y = p
(k−v)α1+s−z ord f (p1)−u
1 p(k−v)α2

2 · · · p(k−v)αn
n `. Then x = (dv p

z ord f (p1)+u
1 )y. By

the choice of u and v, dv p
z ord f (p1)+u
1 ∈ Ma,b. In fact, by the minimality of v, this

element is irreducible in Ma,b. By the choice of z, we have

α1 ≤ (k− v)α1 + s− z ord f (p1)−u < α1 +ord f (p1). (1)
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Since k−v≥ 1, we find that d|Ny, so Lemma 4.3 tells us y∈Ma,b. Since gcd(p1, `)=
1, vp1(y) = ((k− v)α1 + s− z ord f (p1)−u)/α1 and y is divisible by d in N at most
vp1(y)/α1 times. Yet by Equation (1) we know vp1(y) ≤ 1+ (ord f (p1)− 1)/α1.
So y can be written as a product of at most 1+ b(ord f (p1)−1)/α1c irreducibles of

Ma,b. Note that 1+b(ord f (p1)−1)/α1c ≤ dord f (p1)/α1e. So x = (dv p
z ord f (p1)+u
1 )y

can be factored as product of at most 1+ dord f (p1)/α1e ≤ γ + dord f (p1)/α1e irre-
ducibles of Ma,b. ut

This lemma is perhaps not surprising considering that global ACMs are analo-
gous to ACMs of multiples Mb,b, where b was not a power of a prime. In that case,
Proposition 2.3 (1), demonstrated that λ = 3 sufficed; indeed, since f = 1 and hence
γ = 1 in this case, our present lemma predicts the same value of λ . An immediate
corollary of this lemma is the following:

Corollary 4.16 [9, Theorem 2.3] Let Ma,b be a global ACM, so that d = gcd(a,b)
is not a power of a prime. The elasticity ρ(Ma,b) = ∞ and Ma,b is not fully elastic.

Hence global ACMs are never half-factorial and never have accepted elasticity.
The last invariant we have considered, the delta set, has not been determined fully
for all global ACMs. However, it is known to be a finite (in contrast to the elasticity)
and moreover the constant λ from above plays an important role as a bound.

Theorem 4.17 [7, Theorem 4.2] Let Ma,b be a global ACM and d = gcd(a,b) =
pαi

1 · · · pαn
n . Let λ ≥ 3 be such that λ > minL (x) for all nonunits x ∈ Ma,b. Then

∆(Ma,b) is finite and max∆(Ma,b)≤ λ −2.

We shall add that explicit bounds for the λ of Lemma 4.15 have been computed
in [7], which are sharp in several cases and listed as corollaries in that paper. These
bounds are obtained by finding certain irreducibles which are special relative to the
factors pi (finding such irreducibles is not difficult) and then computing explicit
numbers in terms of: the pi-adic values of these irreducibles; the exponents αi on
the pi; and least residues of the pi modulo f = b/d. Combining what we have shown
here with the observations made earlier in Theorems 3.4 and 4.9 concerning Delta
sets in the regular and local cases raises the following open problem.

Open Question 4.18 Let Ma,b be an ACM which is not half-factorial. Does there
exist a positive integer c so that ∆(Ma,b) = {1,2, . . . ,c}?

5 Conclusions: Some Known Generalizations

Arithmetic congruence monoids are examples of objects which lead to a more gen-
eral definition. We first extend this through N as follows. Let Γ ⊆ Zb be closed
under multiplication. Set MΓ = {n ∈ N |∃a ∈ Γ n ≡ a mod b}∪{1}. Clearly, MΓ

forms a multiplicative submonoid of N known as a congruence monoid. If Γ is a
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multiplicative subgroup of Z×b , then MΓ is Krull with class group Z×b /Γ [19, Ex-
ample 5.3 (4)]. Interest in these monoids reaches back over 60 years. In [22], James
and Niven prove that a congruence monoid M is factorial if and only if there exists
a positive integer n such that M consists of all positive integers relatively prime to n.
On the other hand, the main result of [8] shows that the congruence monoid made
up of all positive integers not relatively prime to a fixed integer n (appended to 1) is
not factorial but is half-factorial.

The definition of a congruence monoid in N can be generalized even further.
Congruence monoids in general Dedekind domains have been considered in [17]
and we shall define them here in that specific case. Let D be a Dedekind domain,
let f be a nontrivial ideal of D and write [a]f for the image of a ∈ D in D/f. A
congruence monoid M in D is a monoid of the form:

M = {a ∈ D | [a]f ∈ Γ }

for some multiplicatively closed subset Γ of D/f. The ideal f is called an ideal of
definition of M. In their main theorem (Theorem 3.6 of [17]), Geroldinger and
Halter-Koch demonstrate that if D is a Dedekind domain with finite ideal class
group, and D/f is finite, then several strong factorization properties hold for any
congruence monoid M with f as an ideal of definition. Among these properties,
there is a structure theorem for the length sets for elements of M, which states that
such length sets are essentially arithmetic (multi-)progressions.

We close by noting that a natural extension of the ACM property (namely that
a2 ≡ a mod b, but no assumption is made on the size of a relative to b) has been
considered in detail in [16].
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